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Abstract. Recent work haF drawn attention to the utility of algebraic approximants 
for series expansion analysis. The special c a ~ e  of quadratic appmximmts are applied 
to lattice trees (weakly) embedded on the simple cubic lattice. The resulting esti- 
mates of zC, the reciprocal of the growth constant, are compared with those obtained 
from other methods of analysis. 

Series analysis of exact enumeration data has, following the pioneering work of Domb 
and others [l], provided accurate estimates of the critical point and exponents for 
a wide variety of problems in the study of phase transitions. A central difficulty of 
this technique is the choice of an appropriate method of analysis. In particular, the 
method must suit the general form of the function to be analysed. 

Recent work by Brak and Guttmann [2] has drawn attention to the algebraic ap- 
proximants as a method of series analysis when the critical exponent of the function to 
be analysed is a rational number. Quadratic approximants, a special case of algebraic 
approximants, are defined by the equation 

... W l l C l L  hama 1 D!K!,  e!‘.) and j$M) ~ ; e  p=!y-or,-ia!s of deg;ee $;, L a-4 I,{ The 
first N coefficients of the approximant f match those of the function to be approxi- 
mated, with 

N = K + L i M i  2 .  (2) 

The critical point, zc, of a function of the form 

F(zj = B ( z )  + A ( ”  - zC)l” (3) 

will be estimated by the zero of the determinant 

(More specifically, zc is here assumed to be real and positive and the zero of this type 
closest to the origin is used as the estimate. B ( z ) ,  the background term in F(zj, is 
assumed to be analytic a t  z,.) 
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Here quadratic approximants are applied to the generating function, G,  ofunrooted 
lattice trees weakly embedded on the simple cubic lattice 

G = C C n z n  * (z, - (5) " 

(- denotes the singular part). The  coefficients of this generating function to 0(d5) 

believed to be in the same universality class as lattice animals and hence i t  follows 
from the work of Parisi and Sourlas [4] that this generating function is expected to 
have a square root singularity of the type described by equation (3). 

The results obtained from the quadratic approximants are compared with those 
obtained by the ratio method [5], D-log Pad& approximant method [5] and the Baker- 
Hunter confluent singularity analysis [6,7]. The ratio method estimates are extrap- 
olated by means of a Neville table [5]. Methods based on Pad& approximauts, in 
general, do not provide well converged estimates of the critical point offunctions with 
a weak singularity. Therefore, results reported here for the D-log Pad6 and Baker- 
Hunter methods are based on an analysis of the second moment of the generating 
function (cf [a]). (The first moment, corresponding to the rooted embeddings, was 
also analysed. However, convergence of the results was much poorer.) 

o.,&l..hle hnm +he -f CIrLnc .-A XEl:lL:---- 
Y.Y.,YY.I .I".'. "..L ""ln "I "J"C" OL.." .I..n.11O".L [3]. Lattice t:ees ZTie geneia::j. 
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Figure 1. Variation in the estimate of zc from the quadratic approximants with the 
number of coefficients fitted. Full circles reprsent estimates from approximants in 
the sequence h' = L ,  L i 1; M = L .  Crosses represent estimates from approximants 
in the sequence h' = L;  M = L -t 1 and K = M ;  L = M -t 1. 

In figure 1 the estimates of xc from various quadratic approximants are plotted 
against the reciprocal of the number of coefficients of the generating function matched 
by the approximants. The approximants corresponding to the cases 



Quadratic approzimants for  lattice trees 1817 

were primarily considered (following the practice with conventional Pad4 approximants 
of considering diagonal and ‘near-diagonal’ entries in the Pad4 table). For N 2 12, 
the hear-diagonal’ sequences 

K = L ; M  = L f 1 (7) 

and 

K = M ;  L =  M k 1  (8) 

were also considered. The estimates of xc obtained from these latter two sequences 
are the same (to five decimal places) when N = 12 and N = 15. However, for N = 13 
the [4,3,4] approximant gives xc zz 0.09484 hut the D of the [4,4,3] approximant does 
not have a real positive pole < 1.0. There appears to be a clear downward trend in 
the estimate oi xc as the number oi terms matched increases. A reasonable linear 
extrapolation of this trend (figure l ) ,  based on the last few values of z,, would give 
a significant correction to the final estimate of xc (compared with the nnextrapolated 
values). To test for curvature in the estimates of zc, a range-of-fit test [9] was per- 
formed using data points with N > 8. The [4,4,4] approximant was eliminated from 
the analysis as the value of xc (= 0.0941) for this approximant was anomalously low 
compared with those from the other approximants. The results of the range-of-fit test 
depend strongly on the presence of the estimates of xc from the [4,5,4] and [4,4,5] 
approximants. If these points (which have essentially the same value of x,) are in- 
cluded, the extrapolated estimate of xc increases as the number of data points used 
in the linear extrapolation decreases. This may indicate curvature in the estimates of 
xc. However, if the estimates from the [4,5,4] and [4,4,5] approximants are removed, 
the linear extrapolants are very stable and indicate only statistical variations in the 
extrapolated value of zc. While we cannot rule out curvature in the estimates of xc, it 
seems likely that the estimate of xc obtained from the [4,5,4] and [4,4,5] approximants 
is anomalously high and that the variation in the extrapolated zc is an artefact of this. 
Consequently, the points corresponding to these approximants were removed from the 
analysis. The extrapolated value of xc in table 1 was obtained from a least-squares 
linear fit to the remaining points and the error bounds represent the variation in the 
extrapolated value in the range-of-fit test. 

Table 1. Estimates of zc from the (a) quadratic approximant method (b) ratio 
method ( c )  D-log Pad6 approimant method and (d) Baker-Hunter conRuent sin- 
gularity method. The quadratic spproximant value is obtained by extrapolation as 
described in the text. The ratio method value is based on the last few entries of the 
Znd, 3rd, 4th and 5th columns of the Nevi!!e table. 

+0.00001 
-0.00002 

zc 0.09450f 0.00002 0.0946f 0,0002 0.09487f 0.00001 0.09481 

In table 1 we compare this extrapolated value of zc from the quadratic approx- 
imants with the estimates of zc obtained by other methods. The D-log Pad6 ap- 
proximant estimate is obtained by the standard method of drawing a pole residue 
plot and reading the value of zc from this plot that corresponds to the known criti- 
cal exponent. In this sense this estimate is a biased one, based on the known value 
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of the exponent, like the quadratic approximant estimate. The ratio method and 
the Baker-Hunter method estimates are, on the other hand, unbiased. As usual, the 
Baker-Hunter method estimate of zc is obtained by performing the analysis at various 
trial values of zc [7] and estimating zc from the region of the trial values in which the 
real positive pole closest to the origin of the Pad6 approximants t o  the Baker-Hunter 
auxiliary function has its best convergence (taken over various approximants-here 
we use those in which the degree of the numerator and denominator differ by no more 
than one and the sum of the degrees is 2 10). An estimate of 6 is obtained in the 
Baker-Hunter analysis, by noting that  the real positive pole closest to the origin of 
the Pad6 approximants is an estimate of 1/(3 - 6). Taking the variation in these poles 
over the range of the estimate of zc we obtain 

+0.02 
-0.01 

6 = 1.49 (9) 

in good agreement with the expected value. 
When examining the estimates of zc in table 1 it must be recalled that the error 

bounds quoted for each method reflect only the apparent convergence of the method 
(in the cases of the Baker-Hunter and ratio methods) or the apparent certainty with 
which a line may be drawn through the estimates from individual approximants (in 
the cases of the quadratic approximant and D-log Pad6 approximant methods). More- 
over, the assessment of the error bounds is to some extent subjective. (Indeed, the 
upper bound on the Baker-Hunter estimate is slightly revised from that given in an 
earlier paper [lo].) None the less, the  discrepancy between the Baker-Hunter estimate 
and the quadratic approximant estimate is disquieting, especially as the trend in the 
quadratic approximants, already noted, tends to increase the discrepancy. Since the 
Baker-Hunter method, as applied here, takes into account only the scatter over var- 
ious Pad6 approximants, we cannot altogether rule out the possibility that this is a 
short-series effect in the Baker-Hunter analysis. However, i t  prompted a considera- 
tion of possible confluences (or, in the language of critical phenomena, correction to 
scaling terms). The quadratic approximant method will remain valid if the couflu- 
ence has an exponent which is an integer multiple of i. However, if this is not the 
case the quadratic approximants will no longer provide reasonable approximants to 
the generating iunction and we might indeed expect a systematic deviation irom the 
true value of zc. On the other hand, the Baker-Hunter method is applicable to any 
power law confluence and an estimate of the exponent of the Confluence is obtained 
by examining the second pole on the real positive axis of the Pad6 approximants to 
the Baker-Hunter auxiliary function. 

In general this second pole is not well resolved by the approximants for relatively 
short series. A reasonable estimate of its position may be obtained by plotting the 
position of the second pole as a function of the position of the first, and noting that 
the positions appear to be correlated for a given assumed value of zc 1111. From a line 
drawn through the points on this plot an estimate of the exponent of the confluent 
term corresponding to the known exponent of the leading term may be obtained. This 
procedure was applied at  the central estimate of zc and at the extremes of the error 
bounds of I<. The points corresponding to different zcs fa!! on distinct lines and the 
variation in the estimates of the confluent exponent between lines is much greater than 
the uncertainty in the drawing of the  lines, as might he expected. 

From the above procedure, the difference between the exponent of the leading term 
and the confluent term-that is the  correction to scaling exponent-is estimated to 
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be 

A, = 0.84 f 0.01 

Recently, Adler et al  [12] have estimated the correction to the scaling exponent 
for animals using a modified Roskies transformation analysis of the data, and have 
reviewed earlier estimates of this quantity. The results quoted by Adler et a/ fall into 
two classes; those with A, < 1.0 and those with A, = 1.2. Indeed it may be noted 
that  in the extensive analysis of Guttman and Gaunt [13] which one of these two 
groups the result falls into depends on the series analysed (weak or strong emheddings 
for example). Adler e l  a/ appear to dismiss the possibility of a A, < 1.0, despite a 
good convergence in this region at A, % 0.6, and give as their estimate A, = 1.3iO.2. 

The estimate of A, obtained from the Baker-Hunter analysis is consistent with the 
values of Guttmann and Gaunt [13] for those in the class with A, < 1; however, the 
error bounds on the latter are quite wide. A reasonable interpretation of the result 
reported here, those of Guttmann and Gaunt, and that of Adler et al, is that two 
confluent terms are important and that,  for at least some of the series analysed, the 
second confluence bas a weaker singularity but  a much larger coefficient than the first. 
Thus assuming the generating function is of the form 

the present results indicate the value of A, is that given above (equation (10)) and a 
value of A? 1.3 would be expected. 

As already noted, the pole in the Baker-Hunter analysis corresponding to the 
first confluence is not well resolved. It is therefore likely that considerably longer 
series woc!d he required to reso!ve the p& ~orre~pofidifig $0 the second cofiflnefi~e, 
Indeed, examination of the Pad& approximants, used in the Baker-Hunter analysis, 
a t  the central estimate of xc and at  the extremes of the error bounds on xc, reveals 
only one approximant with three real positive poles. This is the [7/7] approximant 
t o  the auxiliary function a t  zc = 0.09479. The poles of this approximant estimate 
0 = 0.504, A, = 0.86 and A, = 1.4. While this is consistent with the interpretation 
given above, results based on a single Pad6 approximant are, a t  best, very weak 
corroborative evidence. Margolina e l  a /  1141 and Lam 1151 have estimated A, from 
a n  analysis of the series expansion of the radius of gyration for lattice animals on a 
simple cubic lattice. Margolina et a l  estimate A, = 0.64 f 0.06 and Lam estimates 
A, = 0.45f0.01 (the number of coefficients used by Lam was greater than those used 
by Margolina e l  a l  ). However, both of these estimates are based on analyses which 
take into account only a single confluence. The influence of a second confluence may 
account for the discrepency among these estimates, and between these estimates and 
the value obtained above by the Baker-Hunter analysis. 

In summary, a persistent trend is observed in the estimates of xc for simple cubic 
lattice trees obtained by using quadratic approximants. This trend, if extrapolated, 
moves the estimate of zc away from the estimate of zc obtained by the Baker-Hunter 
analysis. It is probable that the trend is due to the influence of one or more confluent 
terms. As discussed b y  Brak and Guttmann iZ], algebraic approximants are iikeiy 
t o  be useful for the identification of possible exact solutions. However, as the work 
reported here indicates, caution must be used if applying them t o  obtain numerical 
results when the form of the function to be approximated is not known beyond the 
leading singularity, (This is, of course, true for any method of series analysis.) 
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Lastly, it may be noted that quadratic approximants may, in principal, he used to  
analyse singularities of the form 

In this case, zC is estimated by the 'simultaneous' zeros of P(K) and Q(L)  (and D ) .  
Numerically the zeros of these polynomials are not expected to coincide precisely 
except when f is the exact solution. The quadratic approximant method was therefore 
applied to the generating function for rooted lattice trees on the simple cubic lattice 
(or, equivalently, the first moment of the unrooted generating function). We find that 
in the sequence of approximants considered, P(K) and D exihibit zeros in the range 
[0.092, 0.0951 in all cases and that the difference in these zeros for a given approximant 
becomes small as the number of coefficients used to form the approximant gets larger. 
However, for all but the highest order approximants considered (!K = 4,  L = 4: M = 41 
and [A' = 5, L = 4, M = 41) Q ( L )  does not exhibit a zero in the expected region. For 
both of the highest order approximants P ( K )  and D exhibit zeros at I = 0.09456 and 
x = 0.09460 respectively with a zero in Q(L) at I = 0.09236. Therefore it might he 
expected that several more coefficients would be necessary before the required zero of 
Q(L)  is sufficently close to that of P(K) to give any confidence in the estimate of zC. 
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